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Abstract

New concepts from cognitive science have fundamentally

changed our view of cognitive development. In this paper we explore

the implications of three concepts from cognitive science. These are

learning (and induction), analogy, and capacity. New conceptions of

learning have enabled us to understand how representations of the

world arta acquired. New models of analogical reasoning have

suggested that "logical" inferences are often made by mapping the

problem into a mental model, or schema, induced from ordinary life

experience. A model of analogical reasoning, based on neural nets,

provides a natural basis for capacity limitations, and specifies

changes in representations over age that explain phenomena

previously thought to be stage-related.



Cognitive Science Questions for Cognitive Development:

The Concepts of Learning, Analogy, and Capacity

The view of cognitive development that we wish to present can

be summarized in the following propositions:

1. The concepts children understand, and the strategies they

develop based on that understanding, depend on the complexity of the

representations they can construct.

2. Conceptual complexity can be defined in terms of the number

of independent dimensions that need to be represented. Parallel

Distributed Processing models of the way information is

represented help to explain why the number of dimensions that can

be processed in parallel is limited. This leads to a new definition of

processing capacity.

3. Some of the concepts that children find difficult require

representations that exceed their processing capacity. This results

in strategies that yield some correct solutions, but are not generally

valid. This can account for many phenomena, including some that

have traditionally been attributed to stages.

We would also like to conjecture that the phenomena which

Piaget (1950) attributed to stages correspond to the number of

vectors that can be processed in parallel in a parallel distributed

representation (i.e. they are related to the rank of a tensor product

of vectors). We will consider each of these points in more detail.

Representations have been defined in the cognition literature

(Grossberg, 1980; Halford & Wilson, 1980; Holland, Holyoak, Nisbett

& Thagard, 1986; Palmer, 1978), and their implications have been

It
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summarized elsewhere (Halford, in press). The essence of a
cognitive representation is that it consists of a cognitive structure

which is in correspondence to a structure in the world. Structure is

not used in the Piagetian sense, but means a set of elements on

which one or more relations (or functions) is defined. Any aspect of

the world can be thought of as a set of elements with relations

between the elements. For example "human family" comprises the

elements father, mother, child1 child2, . . . . These elements are

linked by relations like "father of", "mother of", "sibling of", "sister

of", "daughter of", and so on. A cognitive representation of family

will comprise a set of internal mental elements, and a set of

relations that correspond to those in the real world family.

It is not always necessary for the representation elements and

relations to be the same as, or even to resemble, the real world

elements and relations. It is sufficient for a representation to be

valid if the structures correspond; for which mathematical

definitions have been given (Halford, in press, Chapter 2; Holland et

al., 1986). Therefore representations are not "pictures in the head".

Representations can take a number of different forms, but all

comply with the criterion of structural correspondence. There has

been considerable controversy about the reality of the distinction

between images and propositional representations, but this issue

need not concern us here because, as Palmer (1978) points out, two

representations can be taken as equivalent if they contain the same

information and (as Halford, in press), adds the information is

equally accessible.
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There is however one kind of representation that has important

implications for both cognition generally and cognitive development

in particular. This is the parallel distributed processing (P D P)

approach to modelling the microstructure of cognition (Rumelhart &

McClelland, 1986). According to this approach, representations

consist of sets of units, each of which has an activation value. The

set of activation values is normally expressed as a vector. There are

excitatory and inhibitory links between the units, which effectively

code the constraints, or regularities, operating on the structure. The

links operate in parallel, so all constraints operate together. These

representations have a number of important, if counter-intuitive,

properties. These include;

1. Learning depends on changing the strengths of the links

between units.

2. Representations can be superimposed on the same set of

units.

3. The representations have emergent properties which include

automatic generalization and discrimination, automatic averaging

and prototype formation, and automatic regularity detection.

4. If units are lost the representation loses clarity but still

functions to an extent that depends on the proportion of units

remaining (graceful degradation).

5. If too many representations are superimposed on the same

set of units, there is a loss of clarity resulting in ambiguity

(graceful saturation).

6. There is no central control over processing, which consists

in the representation "settling" into the state which best fits all

constraints acting in parallel. Note that this means the distinction



between structure and process virtually disappears in some models

of this type.

7. Recent proposals (e.g., Halford et al, in press: Hinton, 1990)

have pointed the way to dealing with the integration of PDP

representations into structures and concepts. Some of this work

will be used in the proposals which follow.

Further summaries are given by Best (1992, chapter 7;

Rumelhart & McClelland, 1986, chapter 1).

The importance of PDP models to our argument is that, as we

will explain later, they lead to a natural account of the effect of

conceptual complexity on performance. They also enable us to offer a

new definition of processing capacity, and to redefine the question

of whether capacity changes with age.

Conceptual complexity is not synonymous with difficulty.

Tasks can be difficult for many reason besides their complexity. For

example someone can fail a task for lack of knowledge or strategies

(procedural knowledge), because of lack of availability of the

correct hypothesis, poor motivation etc.

We define conceptual complexity in terms of dimensionality,

which is the number of independent items of information required to

represent the concept. Dimensionality is similar to the idea of

degrees of freedom; i.e. the number of independent sources of

variation in a particular system.

The general principles are:
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1. Those variables that enter into the current computation

must be represented, and;

2. Aspects of the situation which vary independently must be

represented as separate dimensions.

The processing load for any step in a task corresponds to the

number of dimensions that must be represented. It has been

confirmed empirically that higher dimensionality is associated with

higher processing load, with other factors controlled (Halford,

Maybery & Bain, 1986; Halford & Leitch, 1989; Maybery, Bain &

Ha lford, 1986).

As we will see, the number of dimensions can be linked to the

number of vectors required to represent a concept in a PDP

representation. This provides a natural explanation for the increase

in processing load with concepts of higher dimensionality.

Processing capacity has proved a difficult and controversial

topic, both in cognition and cognitive development. It has been

considered in more detail elsewhere (Halford, in press, Chapter 3).

There can be no doubt that cognitive development cannot be

attributed solely to growth of capacity. There is too much evidence

that many aspects of performance are attributable at least in part

to accumulation or restructuring of knowledge (Carey, 1985; Chi &

Ceci, 1987). However evidence of the importance of knowledge,

skills, or strategies in no way denies that capacity may also play a

role. Methodological difficulties have tended to prevent evidence

U
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being obtained either for or against the proposition that capacity

increases with age. However there is now a small but growing body

of evidence that capacity does change with age. There is

physiological evidence of capacity change (Diamond, 1989; Goldman-

Rakic, 1987; Rudy, in press; Thatcher, Walker & Giudice, 1987).

There is also evidence of a general processing speed factor that

changes with age (Kail, 1991), and that primary memory capacity

changes with age (Halford, Maybery & Bain, 1988).

Part of the problem is that the question has not been well

defined, so researchers have rot had a clear idea of what they were

seeking. Capacity has often been identified with short term memory

span, because of the memory theory of Atkinson and Shiffrin (1968)

which implied that short term memory was the workspace of

thinking. However as Baddeley (1990) has pointed out, there is little

evidence to support this proposition, and there is considerable

evidence that contradicts it. An extensive literature on working

memory shows that there is little interference between various

cognitive processes such as decision making or reasoning, and a

concurrent short term membry task. See Baddeley (1990) or Halford

(in press, Chapter 3) for reviews. If short term memory were the

workspace of thinking, such interference would be expected. It

seems more likely that short term memory depends on a specialized

system, which Baddeley (1990) calls the phonological loop, and

which is distinct from the central processor.

It appears that processing capacity should be distinct from

storage capacity. Working memory is sometimes used to refer to

information that is stored in short term memory for use in later



problem solving steps, but is not being currently processed. Ability

to retain such information depends on storage capacity, but not on

processing capacity. The latter term should be used for information

that is currently entering into some kind of reasoning, decision

making, or other computational process. Processing capacity is best

defined in terms of the number of independent items of information,

or dimensions, that enter into a specific computation.

Learning. and strategy development

If we accept that knowledge acquisition is a major component

of cognitive development, it follows that learning, defined as

acquisition of knowledge through experience, must play a significant

role. Despite this there has been surprizingly little interest in the

role of learning in cognitive development. Part of the reason is that

the concept of learning is associated in the minds of psychologists

with behavioristic learning theories which have not been found to

offer any solutions to the problems of cognitive development. Such

reservations, though very understandable in the past, are no longer

justified, because there are contemporary learning theories which

do have the potential to explain how children acquire important

concepts, and are worthy of further study by cognitive

developmentalists. The problem of learning has several aspects,

each with associated theory, and We will consider each in turn.

The first aspect is acquisition of knowledge about the

structure of the world. The cognitive representations discussed

earlier comprise information about relations between things and

events in the world, and this information has to be acquired. Given
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the vast amount of information of this type that a child apparently

acquires automatically, the learning process that is responsible

must be very efficient. A reinterpretation of some established

learning phenomena, including classical conditioning (Rescorla,

1988) and discrimination learning (Halford, in press, Chapter 4)

shows that humans and (other) animals possess very basic and

effective learning mechanisms for this purpose. Theories of this

process have been proposed by Holland et al. (1986) and by Holyoak,

Koh & Nisbett (1989). Furthermore PDP theory provides powerful

explanations for our ability to extract regularities f.om experiences

which include a lot of randomness.

The basic principles of this learning are that representations

are strengthened when they validly predict relations between

events, and weakened otherwise. Furthermore the strenghtening

effect depends on the informativeness of the representation.

Representations which make redundant predictions are not learned.

These learning processes can go a long way towards explaining how

children build up a store of knowledge about the structures, or

relationships, in the world. These learned representations provide

the "raw material" for the mental models that are increasingly being

recognized as the basis of natural, human reasoning. These theories

can do a lot to explain how knowledge becomes reorganized to meet

the requirement for children to deal with increasingly complex and

sophisticated concepts.

The second aspect of learning is acquisition of skills and

strategies. There are sophisticated computational models of skill

acquisition (Anderson, 1987) which can be applied to showing how

11
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children acquire reasoning strategies. One such model (Halford,

Maybery, Smith, Bain, Dickson, Kelly & Stewart, 1992; Halford.

Smith, Dickson, Maybery, Kelly, Bain & Stewart, on contract) shows

how transitive inference strategies can be acquired, and w01 be

considered later. These models recognize the active, constructive

role of the child in building its own knowledge base, and are a far

cry from the passive associationistic theories of the past.

Transitive inference

We will explicate the theory of cognitive development through

the task of transitive inference, which has been important

throughout the history of cognitive development research, and for

which a large, high quality data base has been assembled. Consider a

transitive inference task such as: "Peter is fairer than Tom; John is

fairer than Peter. Who is fairest (darkest)?"

There is a reasonable concensus in the literature that such

tasks are performed by arranging the terms in order (Sternberg.

1980; Trabasso, 1977; Thayer & Collyer, 1978). However, before

children's performance on this task can be understood, we need a

conceptualization of the reasoning process.

It is becoming increasingly apparent that human reasoning is

essentially analogical in character, particularly with novel

problems. Therefore we can conceptualize transitive inference as

mapping the premises into a schema, which is used as an analog, as

shown in Figure 1.
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insert Figure 1 about here

In this case a common ordering schema, the top-down (or left-

right) arrangement, is used as an analog. In effect it serves as a kind

of template, or "mental model" for imposing order on the premises.

Once the premises are ordered in this way transitive inferences are

easily made by accessing the ordered representation; e.g. we can

easily see that John is fairer than Tom.

There is some difficulty in performing the mapping however.

This is because both premises must be processed to map any premise

term into a slot in the ordering schema; e.g. we need both premises

to know that John must go in first position. This illustrates a point

which is of some importance to the theory, which is that mapping

into analogs or mental models imposes a processing load, the

magnitude of which depends on the complexity of the structure

involved.

This analogical mapping process is important where a task is

novel. Familiar tasks are usually performed using strategies

acquired through past experience. Transitive inference strategies

normally entail storing the premise terms as an ordered set in short

term memory (Foos, Smith, Sabol & Mynatt, 1976). However

development of these strategies depends on a concept of the task.

According to our model, the concept of the task is based on a

specific instance of an ordered set of at least three elements

(Halford, et al., 1992; on contract).
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We have developed a self-modifying production system model

which acquires strategies through experience, guided by a specific

example of an ordered set which is used as an analog, as shown in

the previous transparency. Once such a strategy is developed there is

no further need for analogical reasoning, except where the strategy

must be modified, or transferred to a new domain.

One major goal of theory in this domain is to account for the

difficulty which transitive inference tasks cause for young children.

Attempts have been made to explain these difficulties away, on the

grounds that they depend on flawed tests, producing false

negatives, or lack of experience, resulting in inadequate knowledge.

However, many of the claims that children succeed with

alternative tests are flawed due to either false positives (e.g.

reporting chance results as success), or failure to consider

alternative bases for the performance (Halford, 1989). Furthermore,

many of the improvements have been with children over five years,

and therfore do not account for the finding that these tasks are

specially difficult for children below this age. Another problem is

that lack of process models makes it difficult to define test

validity, resulting in circularity; "good" tests tend to be those that

children pass. Therefore it seems appropriate to conclude that while

lot of important causes of failure have been discovered, but there

are still sources of difficulty for young children that remain to be

explained.

Therefore we must seek alternative explanations for the

difficulties which children experience with transitivity and some



14

other tasks. Using the easy-to-hard paradigm of Hunt and Lansman

(1982) we have found evidence that performance of children is

capacity-limited on these tasks (Halford et al., 1986).

POP implications for processing capacity

Some new insights into the basis of capacity limitations has

been obtained from our work on parallel distributed processing

models of analogies (Halford, Wilson, Guo, Gay ler, Wiles, & Stewart,

in press). This caused us to address the way concepts are

represented in PDP architectures, and the approach we adopted leads

to some insights into the reason why certain concepts are

associated with high processing loads. We can examine this issue by

seeing how concepts of varying complexities are represented. The

representation of a binary relation, such as LARGER THAN is shown

in Figure 2.

Insert Figure 2 about here

A vector is used to represent the predicate, LARGER THAN, and

another vector is used to represent each argument. In this example,

there is a vector representing arguments elephant and dog. The

predicate-argument binding, treat is, the fact that elephant is larger

than a dog, is represented by the tensor product of the three vectors,

as shown in Figure 2. Actually, each of the units in the vectors

representing "larger than", "elephant", and "dog" is connected to one

of the tensor product units in the interior of the figure, but the

connections are not shown because they would make the figure too

cluttered. The activations on these units effectively code the

1 ;;
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relation between the vectors. The structure permits information

about the relation to be recovered. Given the predicate and an

argument we find possible cases of the second argument; e.g. given

the predicate "larger-than" and "elephant" the representation

permits retrieval of things (such as dogs) that are smaller than

elephants, equivalent to asking what is smaller than an elephant?

Alternatively, given the arguments, the predicate can be found,

equivalent to asking what is the relation between elephant and dog.

Because LARGER-THAN is a binary relation, with two

arguments, it is represented by a rank 3 tensor product, that is, one

with three vectors. However more complex concepts are represented

by structures with more vectors. The representation of transitivity

requires a rank 4 tensor product, as shown in Figure 3.

Insert Figure 3 about here

Given that transitive inferences are made by organizing

premise information into an ordered set of three elements, as shown

in Figure 1, the core of the transitivity concept it a ternary relation.

That is, transitivity is a relation with three arguments,

corresponding to a,b,c or top, middle, bottom, depending on the

particular instantiation.

Consequently, it has to be represented by a tensor product of

higher rank than a binary relation, such as LARGER-THAN. A tensor

product of higher rank imposes a higher processing load, because the

number of tensor product units increases exponentially with the

number of vectors, and the number of connections increases

k.;
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accordingly. The PDP model therefore provides a natural basis for

the increase in processing load that is observed with more complex

concepts such as transitivity.

The rank of a tensor product can be shown to relate to the

conceptual complexity metric based on dimensionality, as discussed

earlier. Recall that the complexity of a concept is defined in terms

of the number of -independent items of information required for the

computations the concept entails. The number of vectors required

for a representation based on tensor products, according to the

model of Halford et al. (in press) is one more than the number of

dimensions. Hence a binary relation, which is 2 dimensional, is

represented by a tensor product of rank 3. Transitivity is three

dimensional, and is represented by a tensor product of rank 4. One

advantage of the approach is that the rank of tensor product required

for particular computations, and hence the dimensionality, can be

confirmed by simulation.

Age and dimensionality of representations

This argument enables us to reformulate the longstanding

question of whether processing capacity changes with age. The

question becomes, not whether overall capacity changes with age,

but whether representations become more differentiated so that

tensor products of higher rank can be processed. This would mean

that concepts of higher dimensionality would be represented,

enabling higher-order relations to be understood. Representations of
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varying dimensionality, with corresponding tensor products, are

shown in Figure 4.

Insert Figure 4 about here

At the lowest level unary relations are represented. These are

1-dimensional concepts, and require tensor products of rank 2. They

include simple categories, defined by one attribute such as the

category of large things, or the category of triangles. They also

include categories defined by a collection of attributes that can be

represented as a single chunk, such as the category of dogs. One

vector (shown vertically in Figure 4) would represent the category

label DOG. The other vector would represent the instances.

Representations of different dogs would be superimposed on this set

of units. Thus vectors representing each known dog would be

superimposed, so the resulting vector would represent the central

tendency of the person's experience of dogs. It would represent the

person's prototype dog. However the representations of the

individual dogs can still be recovered. Questions such as "are

chihuahuas dogs", or "tell me the dogs you know" can be answered by

accessing the representation. Note that the representation is one

dimensional because if one component is known, the other is

determined. Thus if the argument vector represents a labrador, the

other vector must be "dog". Similarly, if the predicate vector

represents "dog", the argument vector must represent one or more

dogs.

They also include ability to represent variable-constant

bindings. The well-known A not-B error in infant object constancy

U
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research can be thought of as requiring ability to treating hiding

place as a variable. That is, when an infant has repeatedly retrieved

an object from hiding place A, then continues to search for it at A

despite having just seen it hidden at B, the infant is treating the

hiding place as a constant. However if hiding place were represented

as a variable this perseveration would be overcome. Thus the fact

that the A not-B error disappears about one year is consistent with

ability to represent rank-2 tensor products developing at that time.

This implies that ability to construct representations equivalent to

rank 2 tensor products probably develops at approximately one year

of age. We would therefore predict that other performances which

require this level of representation, should first appear at this time.

There should be a general ability to represent variables as distinct

from constants.

As we have seen simple categories also occur at approximately

this age, and are represented by rank 2 tensor products. In general,

the appearance of cognitions which require to be represented by rank

2 tensor products amounts to ability to relate one representation to

another. The observations which Piaget attributed to the

preconceptual stage appear to require this level of representation.

At the next level binary relations, and univariate functions can

be represented. These are all 2 dimensional concepts (given any two

components, the third is determined), and they entail tensor

products of rank 3. Based on an assessment of the cognitive

development literature Halford (1982, in press) suggests they

develop at approximately two years of age. They correspond to
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Piaget's observation that in the intuitive stage children process one

binary relation at a time.

At the next level concepts based on ternary relations, binary

operations, and bivariate functions, are represented. These are 3-

dimensional, and require tensor products of rank 4. Well known

examples include transitivity and class inclusion, but there are

many other concepts that belong to this level, including conditional

discrimination, the transverse pattern task, the negative pattern

task, dimension checking in blank trials task, and many more

( Halford, in press). The familiar binary operations of addition and

subtraction belong to this level. One vector represents the operation

(+ or x) while two others represent the addends (multiplicands), and

the fourth vector represents the sum (product). Note that if you

know three of these, the fourth is determined; e.g. if you know the

numbers are 2,3,5 you know the operation is addition; if you know

the numbers 2, ?, 5, and the operation is addition, you know the

missing number is 3, and so on. (Readers interested in PDP might

note that there is no catastrophic forgetting when addition and

multiplication are superimposed on a rank 4 tensor product).

All of these tasks are performed by about five years of age,

but cause considerable difficulty below this age. In a broad sense,

this level of processing corresponds to Piaget's concrete operational

stage, which can be conceptualized as ability to process binary

operations, or compositions of binary relations (Ha {ford, 1982, in

press; Sheppard, 1978).
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At the fourth level concepts based on quaternary relations, and

compositions of binary operations, can be represented. These include

understanding proportion and ability to reason about relations

between fractions, as well as understanding concepts such as

distributivity, that are based on compositions of binary opersations.

In a broad sense this level of processing corresponds to Piaget's

formal operations stage, which entails relations between binary

operations (Halford, in press).

Chunks and dimensions

We have argued ( Halford in press; Halford at al., in press) that

the number of dimensions can be identified with the number of

chunks. Miller's (1956) concept of a chunk is a unit of information

that can vary in size. For example a letter, digit, or word, can all be

chunks, even though they vary considerably in the amount of

information they contain. The limit is in the number of chunks,

irrespective of the amount of information. This entails a paradox,

because the number of items is limited, but the amount of
information is not. It means that the limitation is in the number of

independent items that can be processed. One way to handle this is

to compare chunks with dimensions. That is, a chunk, like a

dimension, is an independent unit of information of varying size. It

appears reasonable to identify chunks, and dimensions, with

vectors,because each vector can represent varying amounts of

information. Thus the explanation for the paradox may be that

information is represented in vectors, each of which represents one

chunk or one dimension.
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Working memory research suggests that the number of chunks

that adults process in parallel is about four (Schneider & Detweiler,

1987; Halford et al., in press). Therefore we would predict that

adults can process a maximum of four dimensions in parallel. This

would mean that the most complex tensor product represeigtations

that can be processed would be rank 5, i.e. with five vek:tors.

Chunkina and segmentation

Concepts more complex than four dimensions can be processed

by either conceptual chunking or segmentation. Conceptual chunking

entails recoding concepts of higher dimensionality into fewer

dimensions, most commonly into one dimension i.e. it entails

reducing multiple chunks to a single chunk. An example would be the

concept of velocity, defined as v s/t. It is 3 dimensional, and

requires a tensor product of rank 4. However it is also possible to

think of velocity as a single dimension, such as the position of a

pointer on a dial.

When velocity is chunked as a single dimension, it can be

represented by a single vector, and combined with up to three other

dimensions. Thus velocity can now be used to define acceleration, a

(v2 - v1)/t.

Acceleration in turn can be chunked, and combined with up to

three other dimensions. Thus force, F ma can be defined as the

product of mass and acceleration. Conceptual chunking enables us to

bootstrap our way up to concepts of higher and higher
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dimensionality, without exceeding the number of dimensions that

can be processed in parallel.

If the number of dimensions can be reduced by chunking, is the

limit in processing capacity meaningful? It is meaningful because

when representations are chunked, we lose the ability to recognize

relations within the representation. When velocity is represented as

a single dimension, we can no longer compute the way velocity

changes as a function of time or distance, or both. Similarly, we

cannot compute what happens to time if distance is held constant,

and velocity varies, and so on. This example illustrates the point

that any computation requires a minimum number of dimensions to

be represented.

Segmentation entails developing serial processing strategies.

In this case tasks are segmented into steps, each of which is small

enough not to exceed the capacity to process information. Only that

part of a concept that is the focus of attention is represented at any

one time. We are developing a model of this process in context of

complex analogical reasoning. Complex analogies, such as that

between heat-flow and water-flow, are represented by a

hierarchical structure, in which an overall concept, such as that

temperature difference causes heat-flow, is represented as a binary

relation, without detail. At the next level down, the details of

temperature difference, and of heat flow, are represented

separately. At any one time, attention can be focused on the overall

concept (that heat flow is caused by tempermare difference), or on

one or other detail (on either temperature difference or on heat-



flow). A related scheme for time-sharing in ccnnectionist networks

has been discussed by Hinton (1990).

However autonomous development of strategies requires a

concept of the task, and this requires that there be sufficient

processing capacity to represent the dimensions of the concept.

Where children cannot represent sufficient dimensions for a

particular concept, they will default to lower dimensionality

representations, which will result in strategies that are partly

correct, but which lead to errors on some variants of the task.

Model of serial processing strategy

In order to explore this aspect of cognitive development, we

have produced a self-modifying production system model of

transitive inference strategies (Halford et al., 1992, on contract).

According to this model, a child uses a schema induced from

ordinary life experience to provide a template for an ordered set.

This template guides the development of strategies. However, as

Figure 1 shows, the mapping of the problem into an ordering schema

requires two relations to be processed, otherwise correspondence

cannot be established.

If children cannot construct 3 dimensional representations,

two relations cannot be processed, and strategies that are only

partially valid will result. This typically results in errors such as

the following: When the premise a>b is presented, the order ab is

constructed. When b>c is presented, c is appended to ab, yielding the

order abc. This is fine, but when a>c is presented, c is placed next to

2.1
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a, yielding acb. A number of errors of this type arise from

processing only one premise at a time, without integrating relations.

This is typical of the performance of young children, and of older

children and adults under high processing load (Maybery et al., in

preparation).

Thus strategies reduce processing load, increase efficiency,

and are an important component of cognitive development, as well as

of expertise. They are not however panaceas, because development of

strategies, unless taught exclusively through external input,

requires that the child be able to represent the structure of the

concept adequately.

Individual sliffsmensaa

This model of cognitive development provides three bases for

individual differences. These are experience, processing capacity,

and the interaction of the two. Because cognitive development is

experience driven, and depends on accumulation of knowledge about

the world, and acquisition of strategies and procedural knowledge,

differences in opportunity for learning will inevitably ,affect

development. The social environment clearly plays a major role in

providing this experience, but social influences operate through the

learning mechanisms that are built into the child. Chunking and

segmentation are major acquisitions with experience, so these will

depend on an individual's environment.

Individual differences in processing capacity probably operate

through the clarity and effectiveness of representations. Less

2,,
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ambiguous representations lead to faster solution times, less errors

and, because they permit tensor products of higher rank to be

computed without confusion, to representation of more complex

relations. Vectors with a lot of "noise" or randomness will yield

increasing ambiguity with higher rank tensor products, because of

the complexity of interconnections involved.

The interaction of capacity and experience occurs because

development of skills and strategies, as well as recoding processes

such as chunking, depend on ability to represent the structure of

concepts. If representations are of less dimensionality than

required, this leads to strategies that are not effective in all

circumstances. The result is partial competence, rather than genuine

competence. The relation between learning and capacity has been

discussed elsewhere (Halford, 1989b).

Cognitive

Cognitive growth depends therefore on four main factors:

The first is learning and induction, which enables the child to

build up an extremely licit store of world knowledge. This is the

"raw material" of the schemas which can be used as mental models

in reasoning and problem solving.

The second factor is conceptual chunking, which entails

recoding representations into fewer vectors, so they can be

combined into more complex representations, without overloading

processing capacity.

01
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The third factor is the development of serial processing

strategies which permit tasks to be performed in smaller steps,

timesharing the available representational capacity.

The fourth factor is the development of ability to represent

concepts of higher dimensionality. The first three factors are

essentially experiential, but the fourth is probably at least partly

maturational. The actual mechanism is not yet known, but it

probably entails differentiating distributed representations into

more vectors. This entails rearranging the connections, to make the

representations equivalent to higher rank tensor products. It would

hot increase overall processing capacity, but would enable higher

orders of relationship to be represented.

The type of change that is envisaged here is analogous to

splitting an experimental design into more independent variables.

The total number of conditions represented might not change, but the

orders of interaction that can occur do change; e.g. if we take a two-

way ANOVA with four levels of one factor and two levels of another,

and convert it into a three factor design with two levels on each

factor, we still have the same number of conditions (8), but now we

have a three-way interaction as well as two-way interactions and

main effects. Thus the most important change is in the orders of

relations that can be represented. Similarly, growth in processing

capacity through development is more likely to mean that higher

order relations can be represented, rather than that more

information can be stored.
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The performance of a child who cannot construct

representations of adequate dimensionality is analogous to

analysing (say) a three-factor experiment as a series of two-way

ANOVAS. Most findings will be a correct account of the data, just as

the hypothetical child's performance will be mostly correct. There

will be however, at least in certain telltale cases, higher order

interactions that will be missed. Similarly, the child who deals with

an N-dimensional concept using representations of dimensionality

less than N is really looking at the task through restricted windows.

Sooner or later telltale performances will occur which show that

the representation was not really adequate.

We suggest that this is a good analog of the role of processing

capacity in cognitive development. The differentiation of

representations into more vectors, and therefore more dimensions,

is an enabling factor that occurs at least partly through maturation,

and which in turn enables children to construct strategies based on

more adequate concepts of tasks. Thus cognitive development is an

interaction of maturation which leads, inter alia, to representations

of higher dimensionality, and experience which contributes to a

knowledge base that provides mental models, schemas, and

strategies, as well as restructured or chunked concepts that reduce

the processing demands of tasks.
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Figure Captions

Figure 1. Transitive inference problem mapped into an ordering

schema.

Figure 2. Tensor product representation of predicate-argument

binding.

Figure 3. Tensor product representation of transitivity.

Figure 4. Dimensionality of representations related to tensor

product representation and to Piagetian stage.
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